ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kenneth Assogba, Lahbib Bourhrara, Igor Zmijarevic, Grégoire Allaire, Antonio Galia
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1584-1599
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2154546
Articles are hosted by Taylor and Francis Online.
The spherical harmonics or PN method is intended to approximate the neutron angular flux by a linear combination of spherical harmonics of degree at most . In this work, the PN method is combined with the discontinuous Galerkin (DG) finite elements method and yield to a full discretization of the multigroup neutron transport equation. The employed method is able to handle all geometries describing the fuel elements without any simplification nor homogenization. Moreover, the use of the matrix assembly-free method avoids building large sparse matrices, which enables producing high-order solutions in a small computational time and less storage usage. The resulting transport solver, called NYMO, has a wide range of applications; it can be used for a core calculation as well as for a precise 281-group lattice calculation accounting for anisotropic scattering. To assess the accuracy of this numerical scheme, it is applied to a three-dimensional (3-D) reactor core and fuel assembly calculations. These calculations point out that the proposed PN -DG method is capable of producing precise solutions, while the developed solver is able to handle complex 3-D core and assembly geometries.