ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Seongchan Kim, Han Gyu Joo
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1564-1583
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2144083
Articles are hosted by Taylor and Francis Online.
The capability and performance of the hexagonal version of the nTRACER direct whole-core calculation code are enhanced for VVER applications by extending the geometry-handling features and also by implementing assemblywise parallelization of the planar method of characteristics (MOC) calculation with higher-order scattering. The geometry-handling methods for the VVER hexagonal geometry having various special constituents are presented with detailed illustrations. The assemblywise domain decomposition (ADD) scheme is established under the hexagonal coarse-mesh finite difference formulation, which is exploited to update the incoming angular flux needed for the ADD parallelization. The solution accuracy and parallel performance are assessed for various hexagonal core problems, including the VVER benchmarks. It is shown that the hexagonal geometry solutions of nTRACER match with the reference Monte Carlo solutions within about 50 pcm in reactivity and 1% in pin power distribution and that the hexagonal ADD can reduce the computing time of the planar MOC calculation by up to 53% when compared to the anglewise parallelization.