ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Seongchan Kim, Han Gyu Joo
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1564-1583
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2144083
Articles are hosted by Taylor and Francis Online.
The capability and performance of the hexagonal version of the nTRACER direct whole-core calculation code are enhanced for VVER applications by extending the geometry-handling features and also by implementing assemblywise parallelization of the planar method of characteristics (MOC) calculation with higher-order scattering. The geometry-handling methods for the VVER hexagonal geometry having various special constituents are presented with detailed illustrations. The assemblywise domain decomposition (ADD) scheme is established under the hexagonal coarse-mesh finite difference formulation, which is exploited to update the incoming angular flux needed for the ADD parallelization. The solution accuracy and parallel performance are assessed for various hexagonal core problems, including the VVER benchmarks. It is shown that the hexagonal geometry solutions of nTRACER match with the reference Monte Carlo solutions within about 50 pcm in reactivity and 1% in pin power distribution and that the hexagonal ADD can reduce the computing time of the planar MOC calculation by up to 53% when compared to the anglewise parallelization.