ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Seongchan Kim, Han Gyu Joo
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1564-1583
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2144083
Articles are hosted by Taylor and Francis Online.
The capability and performance of the hexagonal version of the nTRACER direct whole-core calculation code are enhanced for VVER applications by extending the geometry-handling features and also by implementing assemblywise parallelization of the planar method of characteristics (MOC) calculation with higher-order scattering. The geometry-handling methods for the VVER hexagonal geometry having various special constituents are presented with detailed illustrations. The assemblywise domain decomposition (ADD) scheme is established under the hexagonal coarse-mesh finite difference formulation, which is exploited to update the incoming angular flux needed for the ADD parallelization. The solution accuracy and parallel performance are assessed for various hexagonal core problems, including the VVER benchmarks. It is shown that the hexagonal geometry solutions of nTRACER match with the reference Monte Carlo solutions within about 50 pcm in reactivity and 1% in pin power distribution and that the hexagonal ADD can reduce the computing time of the planar MOC calculation by up to 53% when compared to the anglewise parallelization.