ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Zoltán István Böröczki, Boglárka Babcsány, János Endre Maróti, Máté Szieberth
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1545-1563
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2167469
Articles are hosted by Taylor and Francis Online.
Most of the codes available for homogenized group constant generation for deterministic transport calculations apply the approximation of scalar flux weighting during energy group condensation of higher-order anisotropic scattering matrices. In this paper, we point out the bias caused by scalar flux weighting of linearly anisotropic scattering matrices in the result of SP3 and S12 calculations. An infinite pin cell was homogenized with Serpent 2 and ERANOS ECCO to compare group constants with different energy group condensation options. Serpent 2 applies scalar flux while ERANOS ECCO performs current weighting of the linearly anisotropic scattering matrices. Three simple reactor models were built assuming different core sizes using standard rectangular assemblies with 15 ×15 fuel pins to analyze the effect of the various weighting options. Diffusion, SP3, and S12 calculations were performed for the three models using group constants generated with Serpent 2 and ERANOS ECCO. The effect of scalar flux weighting of linearly anisotropic scattering matrices in higher-order transport calculations is shown by comparing the decrease in reactivity due to the decreased reactor size and the assembly power distribution to reference results obtained with Serpent 2 Monte Carlo calculations. Analogous results were observed during the extension of our investigations to a VVER-440 benchmark and the Budapest University of Technology and Economics (BME) Training Reactor. We also studied the effect of increasing the number of groups in these examples. Neglecting higher than linearly anisotropic scattering and indirect application of diffusion coefficients in higher-order transport calculations is advised with few-group structures if angular flux-moment spectra-weighted higher-order scattering matrices cannot be generated. Although in few-group calculations, it can lead to more accurate higher-order transport solutions than applying scalar flux–weighted linearly anisotropic scattering matrices, by increasing the number of energy groups, the distorting effect of scalar flux weighting can also be decreased.