ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Wenyu Cheng, Jie Liang, Mingjun Zhang, Fei Wei, Jinglin Li, Xiaochong Xue, Youshi Zeng, Ke Deng, Qin Zhang, Wei Liu
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1534-1544
Technical Paper | doi.org/10.1080/00295639.2022.2158020
Articles are hosted by Taylor and Francis Online.
Large amounts of tritium will inevitably be produced during operation from the Thorium Molten Salt Reactor (TMSR) fueled by lithium salt, which is detrimental to the human body. Therefore, it is necessary to evaluate the radiation dose of the generated tritium. The tritium production, emission, and radiation dose of TMSRs were estimated by numerical calculation. According to this study, a 2-MW(thermal) TMSR produces 3.33E+14 Bq·yr−1 of tritium, discharges 2.42E+13 Bq·yr−1 of tritium, and causes 1.06 μSv·yr−1 of radiation dose. A 30-MW(thermal) TMSR produces 5.00E+15 Bq·yr−1 of tritiu.m, discharges 3.62E+14 Bq·yr−1 of tritium, and causes 2.02 μSv·yr−1 of radiation dose. A 2250-MW(thermal) TMSR produces 3.75E+17 Bq·yr−1 of tritium, discharges 2.77E+16 Bq·yr−1 of tritium, and causes 79 μSv·yr−1 of radiation dose. The radiation dose of TMSRs is much less than 1 mSv·yr−1, which is the dose limit for internal recruitment in China. It is determined that TMSRs are safe for humans regarding tritium hazard.