ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Wenyu Cheng, Jie Liang, Mingjun Zhang, Fei Wei, Jinglin Li, Xiaochong Xue, Youshi Zeng, Ke Deng, Qin Zhang, Wei Liu
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1534-1544
Technical Paper | doi.org/10.1080/00295639.2022.2158020
Articles are hosted by Taylor and Francis Online.
Large amounts of tritium will inevitably be produced during operation from the Thorium Molten Salt Reactor (TMSR) fueled by lithium salt, which is detrimental to the human body. Therefore, it is necessary to evaluate the radiation dose of the generated tritium. The tritium production, emission, and radiation dose of TMSRs were estimated by numerical calculation. According to this study, a 2-MW(thermal) TMSR produces 3.33E+14 Bq·yr−1 of tritium, discharges 2.42E+13 Bq·yr−1 of tritium, and causes 1.06 μSv·yr−1 of radiation dose. A 30-MW(thermal) TMSR produces 5.00E+15 Bq·yr−1 of tritiu.m, discharges 3.62E+14 Bq·yr−1 of tritium, and causes 2.02 μSv·yr−1 of radiation dose. A 2250-MW(thermal) TMSR produces 3.75E+17 Bq·yr−1 of tritium, discharges 2.77E+16 Bq·yr−1 of tritium, and causes 79 μSv·yr−1 of radiation dose. The radiation dose of TMSRs is much less than 1 mSv·yr−1, which is the dose limit for internal recruitment in China. It is determined that TMSRs are safe for humans regarding tritium hazard.