ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sangeeta B. Kolavekar, G. B. Hiremath, N. M. Badiger, N. H. Ayachit
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1506-1519
Technical Paper | doi.org/10.1080/00295639.2022.2149232
Articles are hosted by Taylor and Francis Online.
The impact of TeO2 on the elastic and radiation shielding properties of phospho-tellurite glasses doped with varying amounts of Sm2O3 has been studied. The elastic properties, such as packing factor, packing density, Young’s modulus, bulk modulus, shear modulus, and Poisson’s ratio, were determined by using the Makashima-Mackenzie and Rocherulle models. The gamma-ray shielding parameters, such as mass attenuation coefficient, half-value layer, tenth-value layer, effective atomic number, equivalent atomic number, exposure buildup factor, and energy absorption buildup factor, were calculated using Phy-X/PSD software in the energy range from 0.015 to 15 MeV at penetration depths up to 40 mean free paths for selected glasses. The fast neutron removal cross section was also determined using Phy-X/PSD software. The results show that the mass attenuation coefficient decreases with increasing photon energy but is not influenced by the addition of Sm2O3. The exposure buildup factor values and energy absorption buildup factors have lower values in the low- and high-energy regions and higher values in the intermediate energy region. The 1.5 mol % concentration of Sm2O3 in the selected glass shows higher exposure buildup factor and energy absorption buildup factor values in the intermediate energy region. Among the selected glasses, PZBTS1.5 has the highest value of fast neutron removal cross sections. The high density, high effective atomic number, and transparency to visible light of these materials indicate that they can be used as shielding materials in nuclear reactors and nuclear technology.