ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Ramesh, R. Balasubramanian
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1491-1505
Technical Paper | doi.org/10.1080/00295639.2022.2147384
Articles are hosted by Taylor and Francis Online.
On the basis of the generalized van der Waals equations of state, the quasispinodal and the supercritical-point parameters of the Generation IV nuclear reactor coolant materials, namely, sodium, lead and bismuth, have been determined. To improve accuracy, the known van der Waals equation of state has been generalized in three different ways. That is, the attractive term in the van der Waals equation of state has been modified by introducing new substance-specific parameters. The parameters of the generalized van der Waals equations of state have been determined through vapor-liquid critical-point parameters. The mean percentage error in the determined quasispinodal for sodium, lead, and bismuth is less than 3% in comparison with the Semenchenko correlation. T he temperature correlation of the quasispinodal pressure for sodium, lead, and bismuth, formulated in this work, is statistically excellent with the mean correlation coefficient of 0.99995 and the coefficient of determination of 0.999895. The mean supercritical-point parameters of sodium, lead, and bismuth, based on the three-parameter generalized van der Waals equations of state, are found to be (28.80 MPa, 15.1563 10−5 m3/mol, and 2563 K), (207.2275 MPa, 8.876 10−5 m3/mol, and 5278 K) and (155.338 MPa, 10.5923 10−5 m3/mol, and 4788 K) respectively. The generalized van der Waals equations of state are presented in the reduced form from which follows the law of corresponding states.