ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Chenghui Wan, Wenchang Dong, Lin Guo, Jiahe Bai
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1454-1466
Technical Paper | doi.org/10.1080/00295639.2022.2158704
Articles are hosted by Taylor and Francis Online.
The “two-step” scheme based on assembly homogenization is widely applied in simulations for pressurized water reactor (PWR) cores in which the few-group constants of the fuel assembly are generated with the single-assembly simulation. However, the reflective boundary condition adopted in the single-assembly simulation can’t characterize the real environment in the core, especially the strong heterogeneity between the neighboring assemblies. In order to consider the environmental effects on the homogenized few-group constants, a rehomogenization method is proposed. In this method, the heterogeneous neutron spectral of single-assembly model of the reflective boundary condition is corrected with the homogeneous neutron spectral of the real core environment. Through definition and precalculation of the rehomogenization factors for few-group constants during the fuel assembly simulation, corresponding corrected constants can be recomputed during the core simulation to consider the environmental effects. This method has been implemented in our home-developed code Bamboo-C. For method verification, both the heavy reflector PWR EPR1750 and the baffle reflector PWR HPR1000 have been simulated. It can be observed that the biases of the eigenvalues can be notably reduced with the proposed rehomogenization method. The assembly-averaged powers of the peripheral fuel assemblies were also notably reduced, especially for the EPR1750, which indicates that the environmental effects can be appropriately solved with the rehomogenization method.