ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Chenghui Wan, Wenchang Dong, Lin Guo, Jiahe Bai
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1454-1466
Technical Paper | doi.org/10.1080/00295639.2022.2158704
Articles are hosted by Taylor and Francis Online.
The “two-step” scheme based on assembly homogenization is widely applied in simulations for pressurized water reactor (PWR) cores in which the few-group constants of the fuel assembly are generated with the single-assembly simulation. However, the reflective boundary condition adopted in the single-assembly simulation can’t characterize the real environment in the core, especially the strong heterogeneity between the neighboring assemblies. In order to consider the environmental effects on the homogenized few-group constants, a rehomogenization method is proposed. In this method, the heterogeneous neutron spectral of single-assembly model of the reflective boundary condition is corrected with the homogeneous neutron spectral of the real core environment. Through definition and precalculation of the rehomogenization factors for few-group constants during the fuel assembly simulation, corresponding corrected constants can be recomputed during the core simulation to consider the environmental effects. This method has been implemented in our home-developed code Bamboo-C. For method verification, both the heavy reflector PWR EPR1750 and the baffle reflector PWR HPR1000 have been simulated. It can be observed that the biases of the eigenvalues can be notably reduced with the proposed rehomogenization method. The assembly-averaged powers of the peripheral fuel assemblies were also notably reduced, especially for the EPR1750, which indicates that the environmental effects can be appropriately solved with the rehomogenization method.