ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hao Yang, Bin Zhang, Pengcheng Gao, Runze Zhai, Jianqiang Shan
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1436-1453
Technical Paper | doi.org/10.1080/00295639.2022.2158676
Articles are hosted by Taylor and Francis Online.
For severe accidents, in-vessel retention (IVR) is a very effective and crucial severe accident mitigation measure. The lower head of the reactor pressure vessel plays a vital role in the IVR strategy. The failure of the lower head may lead to the release of radioactive substances into the environment. During the implementation of IVR, the lower head is in a high-temperature environment, and its main failure form is creep failure. Therefore, to ensure the successful implementation of the IVR strategy and prevent radioactive material leakage, it is necessary to conduct an in-depth analysis of the lower head. In this paper, the lower head thermal-mechanical creep failure (LHTCF) module is developed based on the theory of plate and shell and Norton-type constructive creep laws. Through the mechanical analysis of the lower head, seven failure criteria are used to evaluate the integrity of the lower head. Finally, the LHTCF module is integrated into the integrated severe accident analysis (ISAA) program, and the accuracy of the module is validated by numerical calculation of the Organisation for Economic Co-operation and Development Lower Head Failure (OLHF) experiment. Through the comprehensive judgment of different failure criteria, the final simulation results are in good agreement with the experimental data. The results show that the wall thickness at the crack decreases sharply before failure due to the effect of creep, and the stress increases abruptly at the failure time. The LHTCF module developed in this paper can accurately predict the creep behavior of the lower head, and the calculated failure time, position, and thickness distribution agree well with the experimental results.