ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Nicolas Martin, Zachary Prince, Vincent Labouré, Mauricio Tano-Retamales
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1406-1435
Technical Paper | doi.org/10.1080/00295639.2022.2159220
Articles are hosted by Taylor and Francis Online.
We investigate using deep learning, a type of machine-learning algorithm employing multiple layers of artificial neurons, for the mathematical representation of multigroup cross sections for use in the Griffin reactor multiphysics code for two-step deterministic neutronics calculations. A three-dimensional fuel element typical of a high-temperature gas reactor as well as a two-dimensional sodium-cooled fast reactor lattice are modeled using the Serpent Monte Carlo code, and multigroup macroscopic cross sections are generated for various state parameters to produce a training data set and a separate validation data set. A fully connected, feedforward neural network is trained using the open-source PyTorch machine-learning framework, and its accuracy is compared against the standard piecewise linear interpolation model.
Additionally, we provide in this work a generic technique for propagating the cross-section model errors up to the keff using sensitivity coefficients with the first-order uncertainty propagation rule. Quantifying the eigenvalue error due to the cross-section regression errors is especially practical for appropriately selecting the mathematical representation of the cross sections. We demonstrate that the artificial neural network model produces lower errors and therefore enables better accuracy relative to the piecewise linear model when the cross sections exhibit nonlinear dependencies; especially when a coarse grid is employed, where the errors can be halved by the artificial neural network. However, for linearly dependent multigroup cross sections as found for the sodium-cooled fast reactor case, a simpler linear regression outperforms deeper networks.