ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Nicolas Martin, Zachary Prince, Vincent Labouré, Mauricio Tano-Retamales
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1406-1435
Technical Paper | doi.org/10.1080/00295639.2022.2159220
Articles are hosted by Taylor and Francis Online.
We investigate using deep learning, a type of machine-learning algorithm employing multiple layers of artificial neurons, for the mathematical representation of multigroup cross sections for use in the Griffin reactor multiphysics code for two-step deterministic neutronics calculations. A three-dimensional fuel element typical of a high-temperature gas reactor as well as a two-dimensional sodium-cooled fast reactor lattice are modeled using the Serpent Monte Carlo code, and multigroup macroscopic cross sections are generated for various state parameters to produce a training data set and a separate validation data set. A fully connected, feedforward neural network is trained using the open-source PyTorch machine-learning framework, and its accuracy is compared against the standard piecewise linear interpolation model.
Additionally, we provide in this work a generic technique for propagating the cross-section model errors up to the keff using sensitivity coefficients with the first-order uncertainty propagation rule. Quantifying the eigenvalue error due to the cross-section regression errors is especially practical for appropriately selecting the mathematical representation of the cross sections. We demonstrate that the artificial neural network model produces lower errors and therefore enables better accuracy relative to the piecewise linear model when the cross sections exhibit nonlinear dependencies; especially when a coarse grid is employed, where the errors can be halved by the artificial neural network. However, for linearly dependent multigroup cross sections as found for the sodium-cooled fast reactor case, a simpler linear regression outperforms deeper networks.