ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Robby Christian, Vaibhav Yadav, R. Steven Prescott, Shawn W. St. Germain
Nuclear Science and Engineering | Volume 197 | Number 1 | June 2023 | Pages S24-S44
Technical Paper | doi.org/10.1080/00295639.2022.2112899
Articles are hosted by Taylor and Francis Online.
This paper describes ongoing work within the Light Water Reactor Sustainability pathway at Idaho National Laboratory (INL) to optimize the security and cost of nuclear power plants. It introduces the dynamic risk assessment tool developed at INL, Event Modeling Risk Assessment using Linked Diagrams (EMRALD). EMRALD is leveraged to optimize the security posture of a nuclear power plant by integrating force-on-force (FOF) simulations and operator mitigation actions, including dynamic and flexible coping strategies (FLEX). To illustrate the methodology, four attack scenarios are modeled in a commercially available FOF simulation tool using a hypothetical nuclear power plant facility. The simulation results provide valuable insights into possible attack outcomes, as well as the probabilistic risk of a core damage event given these outcomes. Safety mitigation procedures are modeled in EMRALD dependent on the attack outcomes by considering human operator uncertainties. The results demonstrate that the number of armed responders can be optimized, while still maintaining the same protection level as the initial security posture. The proposed modeling and simulation framework of integrating FLEX equipment with FOF models enables the nuclear power plants to credit FLEX portable equipment in the plant security posture, resulting in an efficient and optimized physical security system.