ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Zeyun Wu, Cihang Lu, Tao Liu
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1213-1238
Technical Paper | doi.org/10.1080/00295639.2022.2143207
Articles are hosted by Taylor and Francis Online.
The continuous adjoint method and the discrete adjoint method are two alternative approaches used to calculate adjoint solutions for adjoint systems. The continuous adjoint method derives adjoint equations analytically from continuous forward equations and then solves the adjoint equations either analytically or numerically in a discretized form whereas the discrete adjoint method calculates the adjoint solutions directly from the discretized forward equations. With regard to the methodology development and calculation procedure, distinct differences are well recognized between the two methods. For certain reasons, both methods are exclusively preferred and commonly used by different computational communities, but limited studies clarify the connections between the two adjoint methods from either of the communities.
This paper demonstrates the computational equivalence between the continuous and discrete adjoint methods by investigating time-dependent adjoint solutions to the two-group neutron diffusion model in nuclear reactor analysis problems using both methods. Adjoint solutions can be used to estimate system parameters for reactor safety analysis. Appropriate final state conditions for the adjoint systems are specified in both of the methods, and the conditions are clarified with proper physical explanations. With the help of an event-based case study on neutron diffusion models, the accuracy of the time-dependent adjoint fluxes obtained from both methods is verified, and the pros and cons of both adjoint methods are examined. More importantly, the computational equivalence of both methods is demonstrated when they are applied to multigroup neutron diffusion systems. The advantage of calculating time-dependent adjoint fluxes by directly solving time-dependent adjoint systems rather than taking steady-state approximations as in common practice is also demonstrated.