ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Zuolong Zhu, Dean Wang, Valmor de Almeida, Charles Forsberg, Eugene Shwageraus
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1197-1212
Technical Paper | doi.org/10.1080/00295639.2022.2146436
Articles are hosted by Taylor and Francis Online.
The Fluoride salt–cooled High-temperature Reactor (FHR) is a Generation IV reactor concept that can operate under near atmospheric pressure circumstances and further enhance inherent safety. In this study, an FHR core design with 165 MW of thermal output [MW(thermal)] is proposed. The reactor core employs tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks as the basic fuel form, FLiBe [lithium-beryllium fluoride (2 7LiF-BeF2)] as the primary coolant, and a three-batch fuel cycle scheme. Sensitivity analyses on various parameters were performed to optimize the cycle length and neutronic parameters. The fuel cycle of this core design was evaluated in detail from four aspects: cycle length, power peaking factor (PPF), discharge burnup, and temperature coefficient. It was found that a larger fuel channel pitch would have a relatively harder neutron spectrum and yield a relatively longer cycle length, lower PPF, and better fuel temperature coefficient and moderator temperature coefficient (MTC). In addition, burnable poison (BP) (Er2O3) can effectively reduce PPF, hold down the multiplication factor, and more importantly it can improve the MTC. The preliminary design of control blades is also presented in this paper. Furthermore, on the basis of the proposed 165-MW(thermal) core, we propose a novel core design that incorporates “fuel inside radial moderator (FIRM)” assemblies, movable moderator, and movable BP. This new design can extend the fuel cycle length by approximately 45 days for an 18-month fuel cycle. In addition, improvements were also found in PPF, discharge burnup, and temperature coefficients.