ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kaijie Zhu, Boran Kong, Han Zhang, Jiong Guo, Fu Li
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1174-1196
Technical Paper | doi.org/10.1080/00295639.2022.2143706
Articles are hosted by Taylor and Francis Online.
Recently, a three-dimensional method of characteristics (MOC) code called Advanced Reactor CHaracteristics tracER (ARCHER) has been developed by the Institute of Nuclear and New Energy Technology, Tsinghua University, to solve the neutron transport problem in high-temperature gas-cooled reactors (HTRs) with explicit pebble-bed geometry. Although the spatial domain decomposition using the message passing interface (MPI) and the ray parallel using OpenMP have been implemented in the previous version of ARCHER, in order to simulate practical HTR problems it is still necessary to reduce the great computational burden through efficient algorithms. Therefore, the linear source approximation (LSA) scheme, which allows coarser transport calculation grids while maintaining high accuracy, has been added in the latest version of ARCHER to relieve memory pressure together with the MPI-based spatial domain decomposition. Moreover, on-the-fly calculation of the relative position coordinates of the ray segment center can further reduce the memory for storing segment information under LSA. In addition, time-consuming MOC transport sweeps can be reduced greatly with coarse-mesh finite difference (CMFD) acceleration. Numerical results show that both LSA and CMFD acceleration contribute to simulate the practical HTR-10 problem successfully.