ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sam Pasmann, Ilham Variansyah, C. T. Kelley, Ryan McClarren
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1159-1173
Technical Paper | doi.org/10.1080/00295639.2022.2143704
Articles are hosted by Taylor and Francis Online.
In this work we investigate replacing standard quadrature techniques used in deterministic linear solvers with a fixed-seed Quasi–Monte Carlo (QMC) calculation to obtain more accurate and efficient solutions to the neutron transport equation (NTE). QMC is the use of low-discrepancy sequences to sample the phase-space in place of pseudorandom number generators used by traditional Monte Carlo (MC). QMC techniques decrease the variance in the stochastic transport sweep and therefore increase the accuracy of the iterative method. Historically, QMC has largely been ignored by the particle transport community because it breaks the Markovian assumption needed to model scattering in analog MC particle simulations. However, by using iterative methods the NTE can be modeled as a pure-absorption problem. This removes the need to explicitly model particle scattering and provides an application well suited for QMC. To obtain solutions we experimented with three separate iterative solvers: the standard Source Iteration (SI) Solver and two linear Krylov Solvers, i.e., the Generalized Minimal RESidual method (GMRES) and the BiConjugate Gradient STABilized method (BiCGSTAB). The resulting hybrid iterative-QMC solver was assessed on three slab geometry problems of one dimension. In each sample problem the Krylov Solvers achieve convergence with far fewer iterations (up to eight times) than the SI Solver. Regardless of the linear solver used, the hybrid method achieved an approximate convergence rate of as compared to the expected of traditional MC simulation across all test problems.