ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
N. L. Scuro, G. Angelo, E. Angelo, M. H. A. Piro, P. E. Umbehaun, W. M. Torres, D. A. Andrade
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1100-1116
Technical Paper | doi.org/10.1080/00295639.2022.2142437
Articles are hosted by Taylor and Francis Online.
A channel box installation in the IEA-R1 research reactor core was numerically investigated to increase fluid flow in fuel assemblies (FAs) and side water channels (SWCs) between FAs by minimizing bypasses in specific regions of the reactor core, which is expected to reduce temperatures and oxidation effects in lateral fuel plates (LFPs). To achieve this objective, an isothermal three-dimensional computational fluid dynamics model was created using Ansys CFX to analyze fluid flow distribution in the Brazilian IEA-R1 research reactor core. All regions of the core and realistic boundary conditions were considered, and a detailed mesh convergence study is presented. Results comparing both scenarios are presented in the percentage of use of the primary circuit pump. It is indicated that 21.4% of fluid bypass to unnecessary regions can be avoided with the channel box installation, which leads to the total mass flow from the primary circuit for all FAs increasing from 68.9% (without a channel box) to 77.6% (with a channel box). For the SWCs, responsible for cooling LFPs, an increment from 9.7% to 22.4%, avoiding all nondesired cross three-dimensional effects, was observed, resulting in a more homogeneous fluid flow and vertical velocities. It was concluded that the installation of a channel box numerically indicates an expressive mass flow increase and homogeneous fluid flow distribution for flow dynamics in relevant regions. This gives greater confidence to believe that lower temperatures, and consequently oxidation effects in LFPs, can be expected with a channel box installation.