ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Rahman S. Almusafir, Ahmed A. Jasim, Muthanna H. Al-Dahhan
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1001-1037
Critical Review | doi.org/10.1080/00295639.2022.2146993
Articles are hosted by Taylor and Francis Online.
Knowledge and proper safety analyses of the gas coolant and heat transport mechanism in the dynamic core of packed pebble bed nuclear reactors pose challenges to the reliable design and efficient operation of these reactors. Therefore, this paper carefully reviews most of the gas coolant mixing and heat transport studies performed for the fluid flow and heat transfer processes in packed pebble bed reactors (PBRs). It begins with a brief introduction and description of nuclear PBRs. The second section summarizes the physical characteristics of packed bed reactors in terms of the bed structure (porosity) and its radial and axial distributions. The next section examines in detail the characteristics of fluid flow in terms of flow regime identification and pressure drop measurements and correlations. The fourth section considers the investigations and quantifications of the gas dispersion and mixing phenomena of packed bed reactors. The next section deals with the current state of the heat transfer characteristics, measurements, and predictions including both empirical correlations and semiempirical model-based studies. Tables summarize the reported experimental studies along with their operating condition ranges. Comprehensive comparisons with the empirical correlations and available models are presented with significant findings. The content and findings of the present work could provide a thorough understanding and useful information and advance knowledge of the pressure drop, gas coolant mixing, and convective heat transport phenomena in packed pebble bed nuclear reactors.