ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Yue Jin, Stephen M. Bajorek, Fan-Bill Cheung
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 967-986
Technical Paper | doi.org/10.1080/00295639.2022.2087834
Articles are hosted by Taylor and Francis Online.
The accurate prediction of the fluid flow mass and the heat transfer process as well as the system response during reflood transients has long been a critical and challenging issue for reactor system safety analyses. Accurate characterization of the flow and energy transport can also significantly facilitate the various system/component design and optimization tasks. In the current study based on the U.S. Nuclear Regulatory Commission/Pennsylvania State University Rod Bundle Heat Transfer (RBHT) reflood experimental data, a comprehensive uncertainty analysis framework is developed using DAKOTA. The developed framework is used to perform an in-depth reflood model validation and verification for the subchannel analysis code COBRA-TF. In the meantime, the artificial intelligence (AI)–based machine learning (ML) model for rod cladding temperature prediction during reflood is also developed and evaluated using the current framework. Key input parametric effects for reflood thermal-hydraulic prediction include the system pressure, inlet liquid temperature/enthalpy, inlet mass flow rate, and average bundle power input. The figure of merit under consideration is the peak cladding temperature variations. It is found in the current study that, while further model improvement is needed, COBRA-TF can predict the correct parametric trends when compared with the RBHT data. On the other hand, it is challenging for the pure AI-based ML models to correctly reflect the parametric trends. Suggestions for future ML model development are provided in the end.