ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Mahmoud Yaseen, Xu Wu
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 947-966
Technical Paper | doi.org/10.1080/00295639.2022.2123203
Articles are hosted by Taylor and Francis Online.
Recent performance breakthroughs in artificial intelligence (AI) and machine learning (ML), especially advances in deep learning, the availability of powerful and easy-to-use ML libraries (e.g., scikit-learn, TensorFlow, PyTorch), and increasing computational power, have led to unprecedented interest in AI/ML among nuclear engineers. For physics-based computational models, verification, validation, and uncertainty quantification (VVUQ) processes have been very widely investigated, and many methodologies have been developed. However, VVUQ of ML models has been relatively less studied, especially in nuclear engineering. This work focuses on uncertainty quantification (UQ) of ML models as a preliminary step of ML VVUQ, more specifically Deep Neural Networks (DNNs) because they are the most widely used supervised ML algorithm for both regression and classification tasks. This work aims at quantifying the prediction or approximation uncertainties of DNNs when they are used as surrogate models for expensive physical models. Three techniques for UQ of DNNs are compared, namely, Monte Carlo Dropout (MCD), Deep Ensembles (DE), and Bayesian Neural Networks (BNNs). Two nuclear engineering examples are used to benchmark these methods: (1) time-dependent fission gas release data using the Bison code and (2) void fraction simulation based on the Boiling Water Reactor Full-size Fine-Mesh Bundle Tests (BFBT) benchmark using the TRACE code. It is found that the three methods typically require different DNN architectures and hyperparameters to optimize their performance. The UQ results also depend on the amount of training data available and the nature of the data. Overall, all three methods can provide reasonable estimations of the approximation uncertainties. The uncertainties are generally smaller when the mean predictions are close to the test data while the BNN methods usually produce larger uncertainties than MCD and DE.