ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Mahmoud Yaseen, Xu Wu
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 947-966
Technical Paper | doi.org/10.1080/00295639.2022.2123203
Articles are hosted by Taylor and Francis Online.
Recent performance breakthroughs in artificial intelligence (AI) and machine learning (ML), especially advances in deep learning, the availability of powerful and easy-to-use ML libraries (e.g., scikit-learn, TensorFlow, PyTorch), and increasing computational power, have led to unprecedented interest in AI/ML among nuclear engineers. For physics-based computational models, verification, validation, and uncertainty quantification (VVUQ) processes have been very widely investigated, and many methodologies have been developed. However, VVUQ of ML models has been relatively less studied, especially in nuclear engineering. This work focuses on uncertainty quantification (UQ) of ML models as a preliminary step of ML VVUQ, more specifically Deep Neural Networks (DNNs) because they are the most widely used supervised ML algorithm for both regression and classification tasks. This work aims at quantifying the prediction or approximation uncertainties of DNNs when they are used as surrogate models for expensive physical models. Three techniques for UQ of DNNs are compared, namely, Monte Carlo Dropout (MCD), Deep Ensembles (DE), and Bayesian Neural Networks (BNNs). Two nuclear engineering examples are used to benchmark these methods: (1) time-dependent fission gas release data using the Bison code and (2) void fraction simulation based on the Boiling Water Reactor Full-size Fine-Mesh Bundle Tests (BFBT) benchmark using the TRACE code. It is found that the three methods typically require different DNN architectures and hyperparameters to optimize their performance. The UQ results also depend on the amount of training data available and the nature of the data. Overall, all three methods can provide reasonable estimations of the approximation uncertainties. The uncertainties are generally smaller when the mean predictions are close to the test data while the BNN methods usually produce larger uncertainties than MCD and DE.