ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NANO Nuclear opens N.Y. site to demonstrate microreactor technology
To better educate customers and stakeholders on its technology, NANO Nuclear Energy has opened a new demonstration facility in Westchester County, N.Y., that offers an up-close look at nonnuclear parts and components of the four microreactors the company has in development.
Sheng Zhang, Hsun-Chia Lin, Xiaodong Sun
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 920-946
Technical Paper | doi.org/10.1080/00295639.2022.2102389
Articles are hosted by Taylor and Francis Online.
Molten salt reactors (MSRs) are a class of Generation IV nuclear reactors using molten salts as heat transfer fluids. MSRs bring a number of benefits, including low primary system working pressure, high working temperature, and enhanced safety due to the passive safety systems adopted. Although MSRs promise these benefits, a number of key technology needs, such as the accurate prediction of the thermal-hydraulic performance of the passive safety systems, which completely rely on natural circulation, are indispensable for MSR development, licensing, and future deployment. Therefore, this study develops the one-dimensional (1D) NAtural Circulation COde (NACCO) considering the buoyancy and radiative heat transfer effects in high-temperature molten salts for such predictions. The 1D code, developed using MATLAB, is then benchmarked with experimental data from three natural circulation flow experiments, where water, nitrate salt NaNO3-KNO3 (60–40 wt%), and fluoride salt LiF-BeF2 (66–34 mol%, FLiBe) were used as the working fluids. Our analysis shows that (1) the buoyancy and radiative heat transfer effects need to be considered for high-temperature molten salt natural circulation flows, while the radiative heat transfer effect is negligible for low-temperature water flows in the natural circulation experiments investigated, and (2) the 1D code NACCO predicts salt temperature profiles reasonably well, with less than 18°C and 25°C discrepancies from experimental data for the pipe centerline temperature of NaNO3-KNO3 and FLiBe up to 450°C and 750°C, respectively.