ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Yuqi Liu, Shuai Che, Adam Burak, Daniel L. Barth, Nicolas Zweibaum, Minghui Chen
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 907-919
Technical Paper | doi.org/10.1080/00295639.2022.2103343
Articles are hosted by Taylor and Francis Online.
Fluoride salt-cooled, High-temperature Reactors (FHRs), featuring particle fuel, graphite moderator, and molten fluoride salt coolant, are used for electricity generation and process heat applications. The primary loop of an FHR is a closed loop that operates slightly above the atmospheric pressure with the fluoride salt temperature over 600°C. Reliable high-temperature molten salt pumps are critical to the successful deployment of FHRs. To stabilize rotating shafts and reduce the associated friction coefficients, well-designed bearings are required for molten salt pumps. Therefore, it is necessary to investigate the detailed hydrodynamic performance of bearings under high-temperature molten salt conditions. In this study, a computational fluid dynamics software package, i.e., STAR-CCM+, was used to predict the performance of fluoride salt–lubricated bearings. The numerical models were verified and validated respectively based on an analytical solution derived from the Reynolds equation and experimental data published in the literature. Good agreement was observed between the simulation results and the analytical solution and experimental data with a maximum relative discrepancy of less than 5%. The validated numerical model was then employed to predict the pressure distributions, applied static loads, and power losses of high-temperature fluoride salt–lubricated bearings with various Sommerfeld numbers. In addition, a parametric analysis was performed to investigate the influence of the axial and helical grooves of bearings on applied static load and power loss. It is found that under the same salt lubrication conditions, the bearings with helical grooves and axial grooves respectively yield 20% off and 14% off power loss compared with the bearing without grooves.