ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jiaqi Chen, Caleb S. Brooks
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 886-906
Technical Paper | doi.org/10.1080/00295639.2022.2103347
Articles are hosted by Taylor and Francis Online.
The axial-flow centrifugal bubble separator designed for the gaseous fission product removal system in liquid-fueled molten salt reactors is simulated using the Eulerian two-fluid model coupled with the Adaptive Multiple Size Group method to account for the significant coalescence and breakup in the bubble separator. The behavior of the gas core in the bubble separator is mimicked by the symmetric interfacial area concentration model. The separator efficiency, local velocity, and pressure profiles at various conditions are compared with experimental data. Good agreement is found between the experiment and the simulation for the separator efficiency. With the coalescence and breakup being accounted for, the effect of the inlet void fraction on the separator efficiency is correctly captured. For the local pressure and velocity profiles, the agreement is only quantitative due to the simplifications on the geometry and potential limitations of the current computational fluid dynamics models. As good agreement is found for the separator efficiency, the sensitivity study is performed for various operational and design parameters with further simplified two-dimensional axisymmetric simulation.