ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Yeongshin Jeong, Koroush Shirvan, Michael Buric
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 868-885
Technical Paper | doi.org/10.1080/00295639.2022.2102388
Articles are hosted by Taylor and Francis Online.
This work establishes a generic multiphysics tool for liquid-fueled molten salt reactors (LFMSRs) to select key installation locations and specify the expected operating temperature range for the development of advanced instrumentation and control systems, particularly distributed temperature sensors using fiber optics. A commercial computation fluid dynamics package (STAR-CCM+) is used to formulate a neutronics and thermal-hydraulic coupled solver, showing good agreement with a recent benchmark problem developed for evaluating the coupling methodology of neutronics and thermal hydraulics. The multiphysics model is then applied to the reference molten chloride salt fast reactor (MCFR) design under development by TerraPower based on publicly available information. The available two-dimensional axisymmetric model for the reactor core is used for coupling calculations, and system component details are leveraged using the lumped method to complete the energy balance. The dynamic responses of the MCFR model are investigated during operational transients, such as unprotected loss-of-flow and uniform perturbation scenarios. Maximum temperature and local temperature distributions are characterized during unprotected loss of flow and unprotected loss of heat sink events. The thermal responses of the fuel salt and core components are analyzed from induced perturbation of the system parameters, such as the flow rate and the heat sink capacity. The results motivate the use of continuous monitoring of the temperature variation in real time along the reflector region with the use of fiber optics to validate the multiphysics code to support a reactor’s licensing basis, as well as to support the structural longevity and improve safety in LFMSRs.