ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Zhiee Jhia Ooi, Thanh Hua, Ling Zou, Rui Hu
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 840-867
Technical Paper | doi.org/10.1080/00295639.2022.2106726
Articles are hosted by Taylor and Francis Online.
A two–dimensional ring model is developed with SAM to model the core of the High Temperature Test Facility (HTTF) at the system level. The ring model simplifies the complex structure of the HTTF core by converting the hexagonal rows of heaters and flow channels into layers of concentric annular rings. The ring model is first compared against a three–dimensional (3D)–one–dimensional (1D) model where the solid structures are fully resolved in three dimensions while the fluid structures are modeled as 1D flows. Comparison between the 3D–1D and the ring models shows that the latter can predict major parameters reasonably well under steady–state normal operating conditions, but the heater temperatures are under predicted. Adjustment is made to the effective thermal conductivity of the ceramic core of the ring model to improve the heater temperature predictions. The ring model is also used to simulate a transient pressurized conduction cooldown condition and is benchmarked with the experimental data from the HTTF Test PG–27. Good agreement is obtained between the experimental data and the predictions by the ring model.