ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ilyas Yilgor, Eymon Lan, Shanbin Shi
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 753-770
Technical Paper | doi.org/10.1080/00295639.2022.2087835
Articles are hosted by Taylor and Francis Online.
Interest in heat pipe microreactors (HPMRs) has recently grown due to several unique advantages compared with other reactor types. These compact and mobile reactors are expected to find applications in a variety of fields to provide carbon-free power in remote or off-grid locations. Experimental work is needed to aid and expedite the design and licensing of future HPMRs, especially on the validation of heat pipe performance as key heat transfer components. A Low-Temperature Heat Pipe Test Facility (LTHPF) was designed and constructed according to previously developed scaling laws to bypass the difficulties of experimenting with liquid-metal working fluids by using surrogate fluids. The design, instrumentation, and experimental capabilities of the facility are described. The testing conditions, including various operating limits and the ranges of the nondimensional parameters used for scaling analysis, are reported. It is found that certain nondimensional parameters could yield a wide range over the operating conditions, whereas some showed minimal variation when water was used as the working fluid. Last, the performance of several types of wicks, including the annulus-screen, groove-screen, and wrapped-screen designs, were investigated for applications in the LTHPF. It is observed that the groove-screen wick structure provided slight improvement in capillary limits at higher temperatures and that the wrapped-screen wick yielded lower capillary limits due to the absence of a low-resistance flow path for the liquid.