ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Argala Srivastava, Deep Bhandari, K. P. Singh, Umasankari Kannan
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 703-710
Technical Note | doi.org/10.1080/00295639.2022.2131343
Articles are hosted by Taylor and Francis Online.
In this technical note, an analysis of an integral experiment of the Advanced Heavy Water Reactor (AHWR) Critical Facility (CF) with a diffusion-based Monte Carlo (MC) method is discussed. In this method, the diffusion kernel is converted into probabilities per unit time for tracking the particle in the problem domain. The diffusion-based MC method is coupled with a time-dependent MC algorithm developed earlier and has been used for space-time simulations in neutron multiplication assemblies. Kinetics simulations are best solved using a transport MC route, but this requires long computational time. The diffusion-based MC method provides a faster solution in such space-time simulations. Most of the space-time kinetics studies and benchmarks are based on diffusion theory, and there are very few transport theory or MC benchmarks. Thus, the diffusion-based MC facilitates exact comparison with the large number of diffusion theory benchmarks. The efficacy of this method was tested earlier by comparison with the results of realistic space-time kinetics benchmarks based on diffusion theory methods involving multiregion reactors and detailed energy dependence. Comparison of our results with these benchmarks has shown satisfactory agreement.
As a step toward more detailed benchmarking, the ability and accuracy of this method are tested on the recent experiment done in the AHWR CF. The integral experiments with one thoria-based mixed oxide experimental fuel assembly in the core of the AHWR CF were analyzed with this method and were compared with the observed experimental values. The experiments consisted of measurement of the critical height and worth of shut-off rods (SORs) with the experimental fuel assembly placed at different lattice locations. Neutron count rates as a function of time after reactor trip for estimation of the worth of the SORs were also simulated, and the results are found to be in good agreement with the observed values.