ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Shifa Wu, Jiashuang Wan, Zhi Chen, Longtao Liao, Kai Xiao, Pengfei Wang
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 660-675
Technical Paper | doi.org/10.1080/00295639.2022.2123204
Articles are hosted by Taylor and Francis Online.
To improve the economy and safety of small pressurized water reactors (SPWRs) with flexible operating characteristics, the reactor power control system should process excellent robustness to provide satisfactory control performances at different operating conditions. This paper proposes four control strategies for reactor power control of SPWRs based on the linear quadratic Gaussian with loop transfer recovery (LQG/LTR) robust control method, including the single-loop reactor power feedback control (RPFC), single-loop average temperature feedback control, dual-loop feedback control, and modified dual-loop feedback control (MDFC) strategies. The corresponding LQG/LTR controllers in the reactor power control system of a SPWR were designed to assess the performance of the four control strategies. The simulation results show that the LQG/LTR controller with the MDFC strategy can provide good control performances for both reactor power and average coolant temperature among the four control strategies while the controller-based single-loop feedback control shows poor control of the reactor power or average coolant temperature. Meanwhile, compared with the existing conventional reactor power control system, the designed robust control system employing the MDFC strategy can provide better control performance for the reactor power and average coolant temperature in full-power operation of 100% to 90% rated power and low-power operation of 25% to 35% rated power with the differential control rod worth taken as 4 pcm/step and 24 pcm/step, indicating its effectiveness and superiority.