ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Lance Davis, Ralph Hania, Dennis Boomstra, Dillon Rossouw, Florence Charpin-Jacobs, Jan Uhlir, Martin Maracek, Helmut Beckers, Sebastian Riedel
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 633-646
Technical Paper | doi.org/10.1080/00295639.2022.2129951
Articles are hosted by Taylor and Francis Online.
Radiolytic fluorine gas production at temperatures of 40°C to 60°C was investigated for the fluoride salts LiF, BeF2, UF4, ThF4, and 71.7LiF-16BeF2-12.3UF4 (FliBe-UF4) by gamma irradiation of powdered samples using spent fuel elements from the High Flux Reactor (HFR) Petten as the irradiation source; work of a similar nature was previously performed at Oak Ridge National Laboratory in the period 1965 to 1995. Gamma irradiation was conducted for just over 41 days, with total absorbed gamma dose ranging from ~45 MGy for the lightest salts to ~170 MGy for ThF4 and UF4. By measuring the gas pressure within salt-filled capsules during irradiation, it was possible to quantify radiolytic gas production for all salt samples except UF4. Production rates are reported as the salt G-values, measured as number of fluorine molecules produced per 100 eV of energy absorbed (molecules F2/100 eV). The G-values of the salts were found to be G(LiF) ~0.004, G(BeF2) ~0.009, G(ThF4) ~0.021, and G(FLiBe-UF4) ~0.005.