ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Mohamed H. Elhareef, Zeyun Wu
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 601-622
Technical Paper | doi.org/10.1080/00295639.2022.2123211
Articles are hosted by Taylor and Francis Online.
In this paper, the physics-informed neural network (PINN) method is investigated and applied to nuclear reactor physics calculations with neutron diffusion models. The reactor problems were introduced with both fixed-source and eigenvalue modes. For the fixed-source problem, the loosely coupled reactor model was solved with the forward PINN approach, and then, the model was used to optimize the neural network hyperparameters. For the k-eigenvalue problem, which is unique for reactor calculations, the forward PINN approach was modified to expand the capability of solving for both the fundamental eigenvalue and the associated eigenfunction. This was achieved by using a free learnable parameter to approximate the eigenvalue and a novel regularization technique to exclude null solutions from the PINN framework. Both single-energy-group and multiple-energy-group diffusion models were examined in the work to demonstrate the PINN capabilities of solving systems of coupled partial differential equations in reactor problems. A series of numerical examples was tested to demonstrate the viability of the PINN approach. The PINN solution was compared against the finite element method solution for the neutron flux and the power iteration solution for the k-eigenvalue. The error in the predicted flux ranged from 0.63% for simple fixed-source problems up to about 15% for the two-group k-eigenvalue problem. The deviations in the predicted k-eigenvalues from the power iteration solver ranged from 0.13% to 0.92%. These generally acceptable results preliminarily justified the feasibility of PINN applications in reactor problems. The advantageous application potentials as well as the observable computational deficits of the PINN approaches are discussed along with the pilot study.