ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
H. Naik, S. P. Dange, R. J. Singh, W. Jang
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 485-509
Technical Paper | doi.org/10.1080/00295639.2022.2133947
Articles are hosted by Taylor and Francis Online.
The cumulative and independent yields of various fission products within the mass ranges of 78 to 108 and 123 to 155 have been measured in the thermal neutron–induced fission of 235U by using an off-line gamma-ray spectrometric technique. The post-neutron mass yield distribution was obtained from the cumulative yields after applying the charge distribution correction. The data from present and earlier work of our laboratory in the 235U(nth,f) reaction were compared with similar data of 229Th(nth,f), 245Cm(nth,f), and 252Cf(SF) reactions to examine the fine structure in the mass yield distribution for four different even-even fissioning systems with charge of 90 to 98. The comparison shows that the fine structure in the mass yield distribution depends on spherical and deformed neutron shell combinations. The shell combination favors the standard I asymmetric mode of fission in the 235U(nth,f) and 245Cm(nth,f) reactions, whereas it favors the standard II asymmetric mode of fission in the 229Th(nth,f) and 252Cf(SF) reactions.