ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
H. Naik, S. P. Dange, R. J. Singh, W. Jang
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 485-509
Technical Paper | doi.org/10.1080/00295639.2022.2133947
Articles are hosted by Taylor and Francis Online.
The cumulative and independent yields of various fission products within the mass ranges of 78 to 108 and 123 to 155 have been measured in the thermal neutron–induced fission of 235U by using an off-line gamma-ray spectrometric technique. The post-neutron mass yield distribution was obtained from the cumulative yields after applying the charge distribution correction. The data from present and earlier work of our laboratory in the 235U(nth,f) reaction were compared with similar data of 229Th(nth,f), 245Cm(nth,f), and 252Cf(SF) reactions to examine the fine structure in the mass yield distribution for four different even-even fissioning systems with charge of 90 to 98. The comparison shows that the fine structure in the mass yield distribution depends on spherical and deformed neutron shell combinations. The shell combination favors the standard I asymmetric mode of fission in the 235U(nth,f) and 245Cm(nth,f) reactions, whereas it favors the standard II asymmetric mode of fission in the 229Th(nth,f) and 252Cf(SF) reactions.