ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Zhipeng Feng, Fenggang Zang, Shuai Liu, Huanhuan Qi, Xuan Huang
Nuclear Science and Engineering | Volume 197 | Number 3 | March 2023 | Pages 428-442
Technical Paper | doi.org/10.1080/00295639.2022.2118478
Articles are hosted by Taylor and Francis Online.
To further investigate fluid-structure–interaction problems that occur in the nuclear field such as the behavior of pressurized water reactor fuel rods, steam generator tubes, and other heat exchanger tubes, the flow-induced vibrations of two flexible tubes in tandem, side-by-side, and in staggered arrangements are investigated. First, a three-dimensional numerical model for fluid-structure interaction of flexible tubes in cross flow is developed. It is a three-dimensional fully coupled approach with solving the fluid flow and the structure vibration simultaneously. Second, results are presented in the form of force coefficients, dynamic response, trajectories, and wake vortex pattern. The effects of pitch ratio, tube arrangement, and flow velocity on the vibration response and the flow field characteristic are investigated. Critical pitch and critical velocity are obtained successfully. The critical velocity depends heavily on pitch ratio. Under the same pitch ratio and velocity, the side-by-side tubes have the maximum value of fluid force and vibration amplitude, followed by the staggered tubes the and tandem tubes in sequence. The trajectory and wake vortex pattern are highly dependent on tube arrangement, pitch ratio, and flow velocity.