ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Suyambazhahan, T. Sundararajan, Sarit K. Das
Nuclear Science and Engineering | Volume 197 | Number 3 | March 2023 | Pages 413-427
Technical Paper | doi.org/10.1080/00295639.2022.2116380
Articles are hosted by Taylor and Francis Online.
Thermal striping is associated with random fluctuations of temperature that occur at the nonisothermal jet stream interface or across thermally stratified fluid layers due to the high heat transfer coefficient of liquid sodium flow. The temperature fluctuations in the jet mixing or stratified layer regions are transmitted to the adjoining structures after minimal attenuation in a Liquid Metal Fast Breeder Reactor (LMFBR). In turn, the adjoining structure may experience high cycle fatigue and catastrophic failure caused by crack propagation. Investigations have been carried out in detail numerically, and frequency and amplitude of temperature fluctuations in 500-MW(electric) pool-type fast reactor [Prototype Fast Breeder Reactor (PFBR)] structures for practical applications have been observed. The investigations consist of numerical simulations at two levels. First, a published benchmark experiment is analyzed, and then, a suitable computational fluid dynamics (CFD) model is identified for simulating the thermal striping phenomenon numerically. After that, detailed flow and temperature fluctuations are predicted in the reactor structures by analysis carried out based on the CFD model. The values of the temperature fluctuations predicted are found to be within acceptable limits, as required by structural mechanics considerations in the study.