ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Suyambazhahan, T. Sundararajan, Sarit K. Das
Nuclear Science and Engineering | Volume 197 | Number 3 | March 2023 | Pages 413-427
Technical Paper | doi.org/10.1080/00295639.2022.2116380
Articles are hosted by Taylor and Francis Online.
Thermal striping is associated with random fluctuations of temperature that occur at the nonisothermal jet stream interface or across thermally stratified fluid layers due to the high heat transfer coefficient of liquid sodium flow. The temperature fluctuations in the jet mixing or stratified layer regions are transmitted to the adjoining structures after minimal attenuation in a Liquid Metal Fast Breeder Reactor (LMFBR). In turn, the adjoining structure may experience high cycle fatigue and catastrophic failure caused by crack propagation. Investigations have been carried out in detail numerically, and frequency and amplitude of temperature fluctuations in 500-MW(electric) pool-type fast reactor [Prototype Fast Breeder Reactor (PFBR)] structures for practical applications have been observed. The investigations consist of numerical simulations at two levels. First, a published benchmark experiment is analyzed, and then, a suitable computational fluid dynamics (CFD) model is identified for simulating the thermal striping phenomenon numerically. After that, detailed flow and temperature fluctuations are predicted in the reactor structures by analysis carried out based on the CFD model. The values of the temperature fluctuations predicted are found to be within acceptable limits, as required by structural mechanics considerations in the study.