ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Rodolfo M. Ferrer, Joshua M. Hykes
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 333-350
Technical Paper | doi.org/10.1080/00295639.2022.2053491
Articles are hosted by Taylor and Francis Online.
The Spatially Dependent Self-Shielding (SDSS) method has been implemented into CASMO5 within the framework of Equivalence Theory. The Optimal Two-Term Rational (OTTR) approximation is extended in the SDSS method to the Stoker-Weiss treatment of concentric annular fuel subdivisions. Reference fuel-to-fuel probabilities are required by the OTTR and obtained by performing a series of fixed-source, two-dimensional transport calculations for individual pin cell types using the method of characteristics. Several algorithms used in searching for the OTTR coefficients are evaluated with the goal of obtaining the best practical accuracy at minimal computational cost. Numerical results are presented that provide a comparison of various choices of search algorithms and show improved accuracy obtained by increasing the degrees of freedom in the rational approximation. Spatial profiles of the 238U microscopic absorption cross sections in the resonance range obtained using the Distributed Resonance Integral (DRI) and SDSS methods are compared to reference results from Monte Carlo calculations. The comparison highlights the inherent advantages of SDSS over the previous DRI method.