ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Nickolas J. Adamowicz, Annalisa Manera, Edward W. Larsen
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 262-278
Technical Paper | doi.org/10.1080/00295639.2022.2112900
Articles are hosted by Taylor and Francis Online.
The coarse-mesh finite difference (CMFD) method is commonly used to accelerate the iterative convergence of single-physics neutron transport problems. For multiphysics problems, the neutron cross sections depend on the temperature and density, both of which depend on the fission heat source; the resulting nonlinear feedback can significantly degrade the performance of CMFD and even cause instability. In this paper, we propose, for a class of one-dimensional (1-D) model multiphysics problems, a new nonlinearly implicit low-order (NILO) CMFD (NILO-CMFD) acceleration method to improve the performance of CMFD-based methods for solving loosely coupled multiphysics problems. Our numerical testing and Fourier analysis show that for the 1-D model problems, the new NILO-CMFD method achieves the same rapid convergence rate that CMFD achieves for single-physics problems.