ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Nickolas J. Adamowicz, Annalisa Manera, Edward W. Larsen
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 262-278
Technical Paper | doi.org/10.1080/00295639.2022.2112900
Articles are hosted by Taylor and Francis Online.
The coarse-mesh finite difference (CMFD) method is commonly used to accelerate the iterative convergence of single-physics neutron transport problems. For multiphysics problems, the neutron cross sections depend on the temperature and density, both of which depend on the fission heat source; the resulting nonlinear feedback can significantly degrade the performance of CMFD and even cause instability. In this paper, we propose, for a class of one-dimensional (1-D) model multiphysics problems, a new nonlinearly implicit low-order (NILO) CMFD (NILO-CMFD) acceleration method to improve the performance of CMFD-based methods for solving loosely coupled multiphysics problems. Our numerical testing and Fourier analysis show that for the 1-D model problems, the new NILO-CMFD method achieves the same rapid convergence rate that CMFD achieves for single-physics problems.