ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Nickolas J. Adamowicz, Annalisa Manera, Edward W. Larsen
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 262-278
Technical Paper | doi.org/10.1080/00295639.2022.2112900
Articles are hosted by Taylor and Francis Online.
The coarse-mesh finite difference (CMFD) method is commonly used to accelerate the iterative convergence of single-physics neutron transport problems. For multiphysics problems, the neutron cross sections depend on the temperature and density, both of which depend on the fission heat source; the resulting nonlinear feedback can significantly degrade the performance of CMFD and even cause instability. In this paper, we propose, for a class of one-dimensional (1-D) model multiphysics problems, a new nonlinearly implicit low-order (NILO) CMFD (NILO-CMFD) acceleration method to improve the performance of CMFD-based methods for solving loosely coupled multiphysics problems. Our numerical testing and Fourier analysis show that for the 1-D model problems, the new NILO-CMFD method achieves the same rapid convergence rate that CMFD achieves for single-physics problems.