ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Patrick Behne, Jan Vermaak, Jean Ragusa
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 233-261
Technical Paper | doi.org/10.1080/00295639.2022.2112901
Articles are hosted by Taylor and Francis Online.
This work presents a data-driven, projection-based parametric reduced-order model (ROM) for the neutral particle radiation transport (linear Boltzmann transport) equation. The ROM utilizes the method of snapshots with proper orthogonal decomposition. The novelty of the work is in the detailed proposal to exploit the parametrically affine transport operators to intrusively, yet efficiently, build the reduced transport operators in real time in a matrix-free manner compatible with sweep-based transport solvers. This affine-based ROM is applied to one-dimensional (1-D), two-dimensional (2-D), and 2-D multigroup transport benchmarks and is found to significantly outperform less intrusive ROMs in terms of speed for a desired accuracy level. The ROM has an 18.2 to 89.4 speedup with an error range of 0.0002% to 0.01% for the 1-D benchmark, a 1120× to 4870× speedup with an error range of 0.0009% to 0.01% for the 2-D benchmark, and a 54 600× to 399 800× speedup with an error range of 0.00022% to 0.01% for the multigroup 2-D benchmark. Even higher speedups are expected for three-dimensional multigroup transport problems.