ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Anil K. Prinja, Patrick F. O’Rourke
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 189-211
Technical Paper | doi.org/10.1080/00295639.2022.2087830
Articles are hosted by Taylor and Francis Online.
The stochastic theory of neutron transport is extended to describe the cumulative distribution of fission numbers and deposited fission energy in a subvolume of a multiplying assembly. Solutions for the probability distributions are obtained using analytical approximations and Monte Carlo simulation in lumped geometry and in symmetric homogeneous and heterogeneous spheres. The results show the development of a power-law tail in the steady-state fission number and deposited energy distributions when the medium is critical, independent of the fission neutron multiplicity distribution and domain heterogeneity. In contrast, the asymptotic decay is faster than exponential in subcritical media due to rapid chain extinction and in supercritical media due to the increasing probability of chain divergence. A formal asymptotic analysis of the problem in lumped geometry with an arbitrary fission neutron multiplicity confirms the existence of power-law tails at critical.