ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Edward W. Larsen
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 145-163
Technical Paper | doi.org/10.1080/00295639.2022.2058847
Articles are hosted by Taylor and Francis Online.
In this paper, the standard multigroup neutron diffusion equations are derived as an asymptotic approximation to the multigroup neutron transport equations. The asymptotic analysis employs a scaling that (1) is suggested by the multigroup neutron diffusion equations themselves and (2) generalizes the long-known asymptotic scaling for monoenergetic transport problems. Two other asymptotic scalings of the multigroup transport equations are also considered, both of which lead to a new “group-collapsed” (monoenergetic) “equilibrium” diffusion approximation. The standard multigroup and equilibrium diffusion approximations are shown to preserve certain nonasymptotic properties of the multigroup transport equations. Generalizations of the analyses in this paper, and possible practical applications, are discussed.