ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
Edward W. Larsen
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 145-163
Technical Paper | doi.org/10.1080/00295639.2022.2058847
Articles are hosted by Taylor and Francis Online.
In this paper, the standard multigroup neutron diffusion equations are derived as an asymptotic approximation to the multigroup neutron transport equations. The asymptotic analysis employs a scaling that (1) is suggested by the multigroup neutron diffusion equations themselves and (2) generalizes the long-known asymptotic scaling for monoenergetic transport problems. Two other asymptotic scalings of the multigroup transport equations are also considered, both of which lead to a new “group-collapsed” (monoenergetic) “equilibrium” diffusion approximation. The standard multigroup and equilibrium diffusion approximations are shown to preserve certain nonasymptotic properties of the multigroup transport equations. Generalizations of the analyses in this paper, and possible practical applications, are discussed.