ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Edward W. Larsen
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 145-163
Technical Paper | doi.org/10.1080/00295639.2022.2058847
Articles are hosted by Taylor and Francis Online.
In this paper, the standard multigroup neutron diffusion equations are derived as an asymptotic approximation to the multigroup neutron transport equations. The asymptotic analysis employs a scaling that (1) is suggested by the multigroup neutron diffusion equations themselves and (2) generalizes the long-known asymptotic scaling for monoenergetic transport problems. Two other asymptotic scalings of the multigroup transport equations are also considered, both of which lead to a new “group-collapsed” (monoenergetic) “equilibrium” diffusion approximation. The standard multigroup and equilibrium diffusion approximations are shown to preserve certain nonasymptotic properties of the multigroup transport equations. Generalizations of the analyses in this paper, and possible practical applications, are discussed.