ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Dong Yang, Lin Chen, Yongchang Feng, Haisheng Chen
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 74-91
Technical Paper | doi.org/10.1080/00295639.2022.2102391
Articles are hosted by Taylor and Francis Online.
The heat transfer characteristic of supercritical water is one of the crucial issues in SuperCritical Water-Cooled Reactors (SCWRs). The efficiency and safety of the SCWR system are largely dependent on the local heat transfer performance. This paper establishes the numerical model for supercritical water in a long vertical circular loop (inside diameter = 10 mm) and analyzes the flow and heat transfer mechanism during the transition process from subcritical to supercritical states under various heat fluxes (uniform and nonuniform). The results reveal that the difference in thermophysical properties between the boundary layer and the core region is the main reason for the heat transfer behavior, especially during the transition from subcritical to supercritical and liquidlike to gaslike. The flow structure on the buffer layer is a dominating factor for heat transfer deterioration. The cases under variable nonuniform heat fluxes have a higher heat transfer coefficient compared with uniform heat fluxes. But, this will cause large changes of the parameter locally. The dominating factors of heat transfer deterioration under these conditions are also identified.