ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Aaron J. Reynolds, Todd S. Palmer
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 45-73
Technical Paper | doi.org/10.1080/00295639.2022.2097565
Articles are hosted by Taylor and Francis Online.
We use the deterministic neutron transport code QuasiMolto to simulate steady-state operation of the Molten Salt Reactor Experiment (MSRE). Comparisons are made to similar results from the MOST benchmark, the MOOSE-based code Moltres, and the design calculations for the MSRE. In the course of these comparisons, we calculate a value of 0.1799 for the graphite-to-fuel power density ratio, which differs significantly from that seen in other works. We also find uniform graphite heating inadequate to reproduce the characteristic graphite temperature distribution of the MSRE. Leveraging the multilevel projective methodology of QuasiMolto, the influence of transport effects on the modeled problem is found to produce average and maximum group flux variations of 2% to 5% and 30%, respectively, with a 12% variation in the reactivity loss due to delayed neutron precursor drift.