ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Daniel Siefman, Mathieu Hursin, Catherine Percher, David Heinrichs
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 14-24
Technical Paper | doi.org/10.1080/00295639.2022.2103344
Articles are hosted by Taylor and Francis Online.
Thermal neutron scattering laws are important nuclear data for many nuclear science and engineering applications. Validation helps to ensure that a thermal neutron scattering law has a high quality and often employs critical benchmarks as integral experiments. Recently, pulsed-neutron die-away benchmarks have been used as an experiment to validate thermal neutron scattering laws. Herein, we evidence how this alternative integral experiment has a high sensitivity to these nuclear data by performing an uncertainty quantification analysis. The analysis randomly sampled the nuclear model parameters associated with hydrogen bound in light water thermal neutron scattering law and sampled other nuclear data that influenced the experiment’s integral parameter (e.g., elastic scattering, absorption in hydrogen and oxygen) from their respective covariance matrices. The thermal neutron scattering law caused an uncertainty in the integral parameter that reached 2.67%, which exceeds by an order of magnitude the uncertainties induced in commonly used thermal solution critical benchmarks. The validation performed here, although limited due to a poor description of the historical experiment, indicated that the ENDF/B-VIII.0 thermal neutron scattering law well predicted the integral parameter. These results motivate further benchmark and validation efforts using pulsed-neutron die-away experiments.