ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Daniel Siefman, Mathieu Hursin, Catherine Percher, David Heinrichs
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 14-24
Technical Paper | doi.org/10.1080/00295639.2022.2103344
Articles are hosted by Taylor and Francis Online.
Thermal neutron scattering laws are important nuclear data for many nuclear science and engineering applications. Validation helps to ensure that a thermal neutron scattering law has a high quality and often employs critical benchmarks as integral experiments. Recently, pulsed-neutron die-away benchmarks have been used as an experiment to validate thermal neutron scattering laws. Herein, we evidence how this alternative integral experiment has a high sensitivity to these nuclear data by performing an uncertainty quantification analysis. The analysis randomly sampled the nuclear model parameters associated with hydrogen bound in light water thermal neutron scattering law and sampled other nuclear data that influenced the experiment’s integral parameter (e.g., elastic scattering, absorption in hydrogen and oxygen) from their respective covariance matrices. The thermal neutron scattering law caused an uncertainty in the integral parameter that reached 2.67%, which exceeds by an order of magnitude the uncertainties induced in commonly used thermal solution critical benchmarks. The validation performed here, although limited due to a poor description of the historical experiment, indicated that the ENDF/B-VIII.0 thermal neutron scattering law well predicted the integral parameter. These results motivate further benchmark and validation efforts using pulsed-neutron die-away experiments.