ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
B. D. Ganapol
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 1-13
Technical Paper | doi.org/10.1080/00295639.2022.2097494
Articles are hosted by Taylor and Francis Online.
Here, we are concerned with a new, highly precise, numerical solution to the one-dimensional neutron transport equation based on Case’s analytical, singular eigenfunction expansion (SEE). While a considerable number of numerical solutions currently exist, understandably, because of its complexity even in one dimension, there are only a few truly analytical solutions to the neutron transport equation. In 1960, Case introduced a consistent theory of the SEE for a variety of idealized transport problems and forever changed the landscape of analytical transport theory. Several numerical methods, including the Fn method, were based on the theory. What is presented is yet another, called the Lagrange order N method (LNM) featuring the simplicity and precision of the Fn method, but for a more convenient and natural Lagrangian polynomial basis.