ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
John Pevey, Briana Hiscox, Austin Williams, Ondřej Chvála, Vladimir Sobes, J. Wesley Hines
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1559-1571
Technical Paper | doi.org/10.1080/00295639.2021.1987133
Articles are hosted by Taylor and Francis Online.
This paper presents a gradient-informed design optimization of nuclear reactor core components based on neutronics objectives with both continuous and discrete materials. The main argument in favor of using gradient-informed design optimization is that it scales well with increasing dimensionality of the design space. First, a challenge problem with 121 free parameters is solved with a gradient-informed method and then with a genetic algorithm. Then, a challenge problem to optimize the flux profile of a simplified assembly with eight axial zones is solved. Both challenge problems are solved using directly calculated derivatives from Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) in the SCALE package. This work also demonstrates how a discrete optimization problem—selection of materials for 121 voxels—can be lifted into a continuous problem with mixed materials. In the continuous space, adjoint-based gradients are well-defined, and gradient descent is applicable. Then, a forcing function is introduced that with the selection of an appropriately sized hyperparameter can be used to guide the optimized continuous solution back into a discrete solution. This paper presents an account of the challenges that were faced when applying a gradient-informed optimization algorithm using a Monte Carlo calculation to estimate the gradient information and compares a gradient descent optimization method to a genetic algorithm optimization of the same geometry. Overall, this work demonstrates the potential use of adjoint-based gradient calculations in design optimization of nuclear systems.