ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
John Pevey, Briana Hiscox, Austin Williams, Ondřej Chvála, Vladimir Sobes, J. Wesley Hines
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1559-1571
Technical Paper | doi.org/10.1080/00295639.2021.1987133
Articles are hosted by Taylor and Francis Online.
This paper presents a gradient-informed design optimization of nuclear reactor core components based on neutronics objectives with both continuous and discrete materials. The main argument in favor of using gradient-informed design optimization is that it scales well with increasing dimensionality of the design space. First, a challenge problem with 121 free parameters is solved with a gradient-informed method and then with a genetic algorithm. Then, a challenge problem to optimize the flux profile of a simplified assembly with eight axial zones is solved. Both challenge problems are solved using directly calculated derivatives from Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) in the SCALE package. This work also demonstrates how a discrete optimization problem—selection of materials for 121 voxels—can be lifted into a continuous problem with mixed materials. In the continuous space, adjoint-based gradients are well-defined, and gradient descent is applicable. Then, a forcing function is introduced that with the selection of an appropriately sized hyperparameter can be used to guide the optimized continuous solution back into a discrete solution. This paper presents an account of the challenges that were faced when applying a gradient-informed optimization algorithm using a Monte Carlo calculation to estimate the gradient information and compares a gradient descent optimization method to a genetic algorithm optimization of the same geometry. Overall, this work demonstrates the potential use of adjoint-based gradient calculations in design optimization of nuclear systems.