ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. Talamo, A. Bergeron, S. Mohanty, S. N. P. Vegendla, F. Heidet, B. Ade, B. R. Betzler, K. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1464-1475
Technical Paper | doi.org/10.1080/00295639.2021.1977078
Articles are hosted by Taylor and Francis Online.
This study focuses on the calculation of the energy deposition in the Transformational Challenge Reactor by two major Monte Carlo codes: Serpent and MCNP. The first software computation relies on Kinetic Energy Released per unit Mass (KERMA) factors while the second one relies on Q-values. The results from these two independent computation methodologies are in very good agreement; however, Serpent runs much faster than MCNP (for the same computational model) and allows for a detailed energy deposition distribution from a 1-mm-side square mesh with a relative statistical error between 0.5% and 1%. This detailed energy deposition is suitable for multiphysics analyses aimed at design optimizations. In order to calculate the energy deposition, Serpent needs enhanced ACE files (distributed by the software developers). Unlike other Monte Carlo software that uses inputs based on Python or Java languages, the Serpent input syntax is very similar to that of MCNP; a Python script can convert a MCNP input to a Serpent input in seconds. For simulations not requiring the calculation of the energy deposition, Serpent can also read nuclear data from MCNP ACE files, which eventually improves the comparison of the results of the two codes.