ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Alexander J. Huning, William M. Kirkland, Kurt A. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1425-1441
Technical Paper | doi.org/10.1080/00295639.2021.1989237
Articles are hosted by Taylor and Francis Online.
An integrated safety design and radionuclide (RN) retention strategy is developed to support the Transformational Challenge Reactor (TCR) demonstration. This demonstration aims to showcase viability for rapid deployment of a novel reactor by leveraging the advances in materials, manufacturing, and computational sciences through a highly integrated and agile design and development approach. This strategy provides a logical description and understanding of how RNs are contained within the facility. Rather than discussing fission product barriers individually between separate design and safety basis reports, this paper provides a consistent description and narrative to better facilitate regulatory interactions and focus safety design efforts. The principal barriers credited include the various coating layers in the tristructural isotropic (TRISO) fuel particle, the silicon carbide (SiC) matrix hosting the particles within the fuel element, the helium pressure boundary, and the confinement system. The choice and assumed performance of the credited barriers are highly conservative, which is a direct reflection of the low hazard that the TCR demonstration presents and the need to simplify and focus the safety review process accordingly. However, the strategy and the associated framework are generalized and may be adopted and tailored to support other advanced reactor demonstration efforts.