ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Carlotta G. Ghezzi, Robert F. Kile, Nicholas R. Brown
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1361-1382
Technical Paper | doi.org/10.1080/00295639.2022.2097466
Articles are hosted by Taylor and Francis Online.
This work analyzes the failure process of the silicon carbide (SiC) layer in tristructural isotropic (TRISO) during reactivity-initiated accident scenarios for a high-temperature gas-cooled reactor (HTGR) with BISON. Two cases are considered—a group control rod withdrawal (CRW) and a control rod ejection (CRE)—reproduced from a previous study. Failure probability is modeled using Weibull statistics, and worst-case scenario Weibull parameters are adopted to simulate the envelopes in BISON with a one-dimensional TRISO model. CRW scenario results are characterized by higher values of maximum energy deposition and final temperature and volumetric strain with respect to the CRE ones, but the latter have remarkably higher SiC failure probability, mainly due to the offset in strain rates between the two cases. This work also confirms the validity and conservatism of the performance envelopes produced in a previous work by replicating the envelope formulation using RELAP5-3D and RAVEN with a different sampling technique and obtaining consistent results. A sensitivity analysis using the Sobol variance decomposition method on SiC failure probability is then performed involving a set of inputs on both CRW and CRE. The two most important parameters are Weibull modulus and characteristic stress, and their relative importance depends on the specific case. The proposed interpretation of the results is that both energy deposition and strain rate influence the relative degree of importance of the failure parameters. Computation of 95% confidence intervals around worst-case scenario SiC failure probability values is also carried out for four different sets of Weibull parameters. A new criterion for SiC TRISO quality classification built upon safety-based ranges of Weibull parameters is proposed to be integrated in future Fuel-Production Quality Assurance Plans.