ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Yasushi Nauchi, Tetsuo Matsumura
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1306-1322
Technical Paper | doi.org/10.1080/00295639.2022.2092355
Articles are hosted by Taylor and Francis Online.
The γ-mode eigenvalue problem is investigated to utilize an exponential experiment to validate nuclear data for reactor core analyses. The perturbation of the spatial decay constant γ by the bias of nuclear data is analyzed with the adjoint flux of the γ-mode eigenvalue problem. The adjoint flux at a phase-space position is found to be proportional to the amplitude of the neutron flux on a plane vertically distant from a source placed at the position. The implication of the adjoint flux is numerically demonstrated based on the diffusion theory. The perturbation theory relating the bias of the fission neutron emission to the perturbation of γ is preliminarily justified in the manner of the continuous energy Monte Carlo.