ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Ilham Variansyah, Ryan G. McClarren
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1280-1305
Technical Paper | doi.org/10.1080/00295639.2022.2091906
Articles are hosted by Taylor and Francis Online.
An extensive study of population control techniques (PCTs) for time-dependent and eigenvalue Monte Carlo (MC) neutron transport calculations is presented. We define PCT as a technique that takes a censused population and returns a controlled, unbiased population. A new perspective based on an abstraction of particle census and population control is explored, paving the way to improved understanding and application of the concepts. Five distinct PCTs identified from the literature are reviewed: simple sampling, splitting-roulette (SR), combing (CO), modified combing, and duplicate-discard (DD). A theoretical analysis of how much uncertainty is introduced to a population by each PCT is presented. Parallel algorithms for the PCTs, applicable for both time-dependent and eigenvalue MC simulations, are proposed. The relative performance of the PCTs based on run time and tally mean error or standard deviation is assessed by solving time-dependent and eigenvalue test problems. It is found that SR and CO are equally the most performing techniques, closely followed by DD.