ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Akio Yamamoto, Tomohiro Endo, Go Chiba, Kenichi Tada
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1267-1279
Technical Paper | doi.org/10.1080/00295639.2022.2087833
Articles are hosted by Taylor and Francis Online.
The resonance upscattering effect (the thermal agitation effect) is implemented in the generation capability of multigroup neutron cross sections of the FRENDY nuclear data processing system. The resonance upscattering effect is considered by (1) the variation of self-shielding factors (effective cross sections) due to the change in the ultra-fine group spectrum and (2) the variation of group-to-group elastic scattering cross sections. Since the upscattering effect is considered in the ultra-fine group spectrum calculation, an iteration calculation is necessary to consider the upscattering. The impacts of the iteration strategy (Jacobi or Gauss-Seidel), as well as the number of iterations, are discussed. In the verification calculations, impacts on the ultra-fine group spectrum, effective cross sections, and neutronics characteristics (the Doppler effect) are confirmed. The effect of energy group structure and the impact of resonance upscattering treatments on the Doppler effect through the variation of effective cross sections and the elastic scattering matrix are investigated. The results indicate that FRENDY can provide appropriate multigroup cross sections considering the resonance upscattering effect.