ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
David Grabaskas, Jason Andrus, Dennis Henneke, Jonathan Li, Matthew Bucknor, Matthew Warner
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S278-S288
Technical Paper | doi.org/10.1080/00295639.2021.2014741
Articles are hosted by Taylor and Francis Online.
The Versatile Test Reactor (VTR) is a fast spectrum test reactor currently being developed in the United States under the direction of the U.S. Department of Energy (DOE), Office of Nuclear Energy (DOE-NE). The mission of the VTR is to enable accelerated testing of advanced reactor fuels and materials required for advanced reactor technologies. The conceptual design of the 300-MW(thermal), sodium-cooled, metallic-fueled, pool-type fast reactor has been led by U.S. national laboratories in collaboration with General Electric-Hitachi and Bechtel National Inc. To facilitate risk-informed design and authorization activities during the conceptual development phase, a conceptual design probabilistic risk assessment (PRA) was performed for the VTR. This paper provides an overview of the development of the VTR conceptual design PRA, including key DOE and industry standards and the PRA analysis approach and structure. In addition, the results of the VTR conceptual design PRA are provided, which include its use within authorization documentation and design decisions, along with important lessons learned during the process. The work reported in the paper is the result of studies supporting a VTR conceptual design, cost, and schedule estimate for DOE-NE to make a decision on procurement. As such, it is preliminary.