ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Nicholas Crowder, Joomyung Lee, Abhinav Gupta, Kevin Han, Saran Bodda, Christopher Ritter
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S260-S277
Technical Paper | doi.org/10.1080/00295639.2022.2055705
Articles are hosted by Taylor and Francis Online.
Designing piping systems for nuclear power plants involves engineers from multiple disciplines (i.e., thermal hydraulics, mechanical engineering, and structural/seismic) and close coordination with the contractors who build the plant. Any design changes during construction need to be carefully communicated and managed with all stakeholders in order to assess risks associated with the design changes. To allow the quick assessment of building and piping design changes through a streamlined building-piping coupled analysis, this paper presents a novel interoperability solution that converts bidirectionally between building information models (BIMs) and pipe stress models. Any design changes during construction that are shown in an as-built BIM are automatically converted into a pipe stress model. Any further design changes due to building-piping interaction analyses are converted back to the BIM for the contractor and other designers to access the latest model. Two case studies are presented to illustrate the bidirectional conversion that allows an integrated coupled analysis of the building-piping system to account for their interactions.