ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Jacob A. Hirschhorn, Jeffrey J. Powers, Ian Greenquist, Ryan T. Sweet, Jianwei Hu, Douglas L. Porter, Douglas C. Crawford
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S123-S147
Technical Paper | doi.org/10.1080/00295639.2022.2043539
Articles are hosted by Taylor and Francis Online.
The U.S. Department of Energy Office of Nuclear Energy’s Versatile Test Reactor (VTR) project is designing a new fast-spectrum test reactor. The VTR reference driver fuel design is sodium-bonded U-20Pu-10Zr (wt%) metallic fuel and HT-9 cladding. The BISON fuel performance code is being used to model the VTR driver fuel pin to evaluate the effects of differences between its design and the legacy designs that preceded it. This work summarizes ongoing efforts at Oak Ridge National Laboratory to benchmark BISON for VTR driver fuel analyses, including establishing metallic fuel performance code requirements for VTR applications and benchmarking BISON for VTR driver fuel analyses. Integral fuel pin predictions are compared to legacy calculations and post-irradiation examination data for 261 fuel pins irradiated at Experimental Breeder Reactor II and the Fast Flux Test Facility. The BISON predictions exhibit trends that are generally consistent with the legacy data. Burnup and temperature predictions were found to be more accurate than mechanical predictions such as radial cladding dilation, axial fuel elongation, and plenum pressure. Likely sources of error were identified for evaluation in future work.